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ABSTRACT

In [1] special classes of solutions of the Korteweg—de Vries

equation

1u~ = 3uu,~ — 
~~

- 
~~~~ = X2u

were studied , in particular , all those u = u(x,t) which are

rational functions of x for each value of t. It turns out

that these solutions are rational functions of t as well and

of very special structure. In this paper we give a new construc-

tion of these solutions with emphasis on their algebraic properties.
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ON A CLASS OF POLYNOMIALS CONNECTED WITH THE KORTEWEG-DE VRIES EQUATION

• M .  Adler and J. Moser

In 11] special classes of solutions of the Korteweg-de Vries equation

• (1.1)- u~ = 3uu
~ 

- 4 u~~~ = X2u

were studied , in par ticular , all those u = u(x ,t) which are rational func—

• tions of x for each value of t. It turns out that these solutions are

rational functions of t as well and of very special structure. In this

paper we give a new construction of these solutions with emphasis on their

algebraic properties.

To describe the family of rational solutions of (1.1), one does well

to introduce the sequence of associated Korteweg-~de Vries equation

• (1.2) u~ = Xku k 1,2,...

which are related by

~5H
x —~~~~~~ k

k~~~~~~~x au

to the sequence of conservation laws

= J Pk(u,u h ,...)dx

associated with (1.1). These X
k can be recursively def ined by

lI~~~~3~~ Hkxk+l (u) = ~u ~~ + u - 
~~~~~~~

as was shown originally by Lenard,see [3]. For the notation used here we

refer to 6,1).

The above nonlinear dif ferential operators commute , and so do the

flows e(t
k Xk

) gene rated by them . We ask for the manifold M of rational

functions invariant under all the flows e(t
k xk

). It is one of the results

of (1] that H decomposes into denumerably many man ifolds Md of dimcnsions

d for d = 1,2,... and , moreover , each Md is generated from the single

• ~ETs wo rk was partia lly sponsored by the Nat ional Science Founda tion , Gran ts
MCS 74-03003--A-02 , tICS 75-17385 , and by the United States Army under
Contract No. DAAG29-75-C-0024.
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function

_ d ( d +l )
U

by the flows e(E tkXk) (see [1], Section 3, Theorem 2).

In this paper we want to give a representation of M
~ 

in terms of a

class of polynomials 0d = O
d (T l, T2,. .., ra ) depending on d variables.

These polynomials will be defined recursively in Section 2 and they allow

the representation of all u e Ma in the form
2

(1.3) U8
(X) = _2 (~~~~) log O

~~~
(T

1 
+ X , T

2
,. .

and this representation is one to one, so that r1,~~2,. ..s rd can be viewed

as global coordinates on M
~
. The X

k 
give rise to vector fields

on M
~ 

which are expressible in terms of the and in Section 5 we will

• determine these rk. It turns out that the r 2 , .  . . , r~ can be subjected

to a group of birational transformations

= a~ r~ + g~~(T 1
,...,T~~~1

) ;  a~ ~ 0

g. being polynomials , without affecting the above representation . Moreover ,

the parameters can be introduced so that

i.e. that the solutions of u~ = Xku are given by

* * * *
Ud

(X , T 2~~
. .. , T ~~ + t$t

k÷1~~• 
.,T d

)

In other words the can be identified with t—variable t
k 

of X
k
. This

picture was developed already in [1] but here this representation is made

more explicit through ( 1.3) and the construction of the polynomials 0k•

The representation (1.3) is analogue to that of Its and Matveev [4) for the

case of solutions of (1.1) having a fixed period in x and for which the

corresponding Hill’s equation has only finitely many simple eigenvalues.

-2- 
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• It is conceivable that (1.3) could be obtained by a limit process from the
*

• formula (4), but we did not succeed in this way. Similarly one may

expect that (1.3) could be obtained as the limit of the N-soliton poten-

tials (8], but neither did we succeed in this way .

We mention that the solutions of the type (1.3) for the case d = 2

were considered by H. Moses [9].

The construction of the as well as the proof of the above statements

are based on a transformation of differential operators L=-D 2 +u into each

other which is certainly not new (see [2 ,11,12]) and the so—called Miura trans—

* forma tion (7]  for which we give a natural derivation . This derivation is

based on the fac torization
• I  *

L A A ; A = D - v

where u = v +v 2. Similarly as in Lax ’ work [51 , where one considers defornia-

• tions of operators L in the equivalence class of operators of the form L’ 1LU

for unitary U, here we consider deformations of operators A in the equivalence

class of operators U1AU2, where U1, U2 are two unitary operators. If we app ly

these ideas to formal differential operators we are lead to the modified

• Korteweg-de Vries equation which by u = v  +v 2 is transformed into (1.1). This

follows from the fac t that any deformution of A of this kind gives rise tr

an iso-spectral deformation of L. The ideas are explained in Section 3.

*
On the other hand if L = A  A one gets a second differential operator

* 2 *L=AA =-D +u by exchanging the role of A and A . Moreover , L is also iso-

spectrally deformed under the above deformation . This gives rise to a Backlund

2 ‘ 2transformation of u = v  +v into u=-v +v leaving the X~ invariant. A pp 1 y i i~g

this transforma tion repeatedly we construct the sequence Ud of (1.3). This trans-

formation has also been employed in the construction of N-soliton solutions [11].

In (1) the functions ud e Md were described in terms of their poles

• 
x1,x2,...,x , f l  = 4 d(d + 1), which have to sa ti sf y the conditions

H. McKean , via persona l communication , informed us of his success in carry ing
out this approach

—3—
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(1.4) 1 (X
k 

— x .) 3 
= 0 for k = 1,2,.. .,n

j=1
j*k

In contrast, here we give preference to the functions

n
fl (x - x.)
j=l

which are constructed in Section 2. As a consequence of their properties

their roots satisfy (1.4) and all solutions of (1.4) can be so obtained.

Thus the t ~~~~~~ , T~~ can be viewed as uniformizing variables for the
1

algebraic variety (1.4).

The second author wishes to express his thanks for the hospitality of

the University of Wisconsin. We are grateful to C. Conley at whose

• 
~• seminar these results were presented and to H. McKean for discussions on

this subject. We also are indebted to P. Deift for pointing out the

relevance of the factorization of second order operators.
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§2. Construction of the polynomials 0
k•

In this section we cons truct a sequence of polynomials O
k(tls* ..PT k

)

for k = 0 ,1,... of k variables, which will be considered as polynomials

• of one variable x = r1, the others figuring as parameters. As such they

have the degree = 4 k(k + 1). They are defined recursively by

(2.1) 00 = 1, = x =

and the differential equation

(2.2) 0
k+l0k l  0k+18k—l = (2k + l)0~

which leaves an integration constant available. We fix this constant by
nk lthe normalization that the coefficient x in 0k+l is equal to

This defines the polynomials uniquely and at each recursive step one

picks up a new integration constant T.

• For the first few polynomials one fines

= 1

81 = x
• • 3

• 02 x + T
2

6 3 2• 03 
= x + 5r 2x + T3x 

— 5T 2

04 x’° + 15t 2x
7 

+ 7r 3x
5 

— 35T2r3x
2 

+ 175T~ x — ~~ T~~ + + T
4

T
2

However , it is by no means obvious that the above differential equations can

be solved within the class of polynomials. That this is the case is the

contents of the following proposition which is purely algebraic. Its proof

is based on division properties of polynomials and properties of the Wronsk ian

(A ,B1 = A ’ H  - AR’ .

Proposi tion: There exis ts a unique sequence of polynomials Ok (x,T2,... , T
k

)

in k variables with rational coefficients satisfying (2.1), the recursion

*
pr ime or P stands for .

_ • ±•~~~~~~~~~~ •~~~~~~~~~• : 
• • • •~~~~~ . •~~~~~~~~~~~~~~~
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• equation (2.2) and the normalization condition mentioned above.

Moreover, the symmetric expression

(2 .3) {O k ,Ok l
) 

~
0k ’ 0k— 1 1 + 10k 1’0k~

vanishes identically*);{ } is defined by this relation.

The 0ks 0~ 
considered as polynomials in x over the ring Q [r2 , .  ..

of polynomials in r2,.. .s T
k 

with rational coefficients have no common

factors. Finally , 0k x k + with n
k 

= 4 k (k  + 1).

Proof: The above statements will be proved together by induction on k.

Assuming they have been proven for k < d we set
3!

x = 0
d~~l’ ~ 

0
d

I -~ We aim to solve the recursion equation

(2.4) (Z,X] = (2d + 1)Y
2

for Z. Instead we solve the equation

(2.5) (Z,X1 = (2d + l ) Y 2 
+ PX

where P is a polynomial in x of degree deg P < deg X and where the

• coefficient of x d 1 in Z vanishes. Equation (2.5) represents a system

of 2
~k 

+ 1 linear equations for the nk+l + 
~k—l 

coefficients of Z and

P. From = 4 k(k + 1) we derive

+ nk_l = 2
~~k~~ 

1

and the number of equations and unknowns match. Thus the solvability of

(2 .5) is assured if we show that the homogeneous system has only the trivial

solution. Therefore we consid:r the equ:tion

Setting Z = cxa + ..., c * 0, the highest term on the left hand side is
a+n -l

c(a — 

~d_ l )
~c d~ l

A simila r identity also holds for N—soliton potentials [81.

-6-
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while the right hand side has terms of order 
~ 

2
~d-l 

- 1 only. Hence

deg Z = a < 2
~d l  

- nd_l = md-l
5d lBy our normalization the coefficient of x in Z vanishes, hence

deg Z < deg X = nd_l. Moreover ,

ZX (Z - P)X

and since X , X have no common factor X must divide Z, which is

impossible unless Z = 0 , since deg Z < deg X. But Z = 0 implies P 0

and the solvability of (2.5) for polynomials Z,P wi th coefficients

rational in 12,... ,Td is established .

Next we show that P = 0 in (2.5) so that Z in fact is a solution

of (2.4). Observe that

( [Z,X) ,X ) = (z , X ]X

is divisible by X. Thus if we take the Wronskian of both sides of (2.5)

• with X we find

(2.6) (Z ,x ]x = (2d + l )[Y 2,x )  + (PX ,X J  =

2 ‘ ‘ ‘2= (2d + 1) [Y ,X ] + [P ,X )X + Px

S 

The crucial observation is that

2 ‘ ‘ 2 ”ly ,X ] = 2YY x - y x = — {Y,x)Y + YY X

with the notation of (2.3). Thus, since by induc tion hypothesis , {Y ,X )  = 0,

2 ‘ ‘2we conclude that [Y ,X ) is divisible by X , hence by (2.6) also PX

is divisible by X. This implies P = 0 as deg P < deg x , and since

X , X have no common factor.

Thus we have shown that the polynomial Z i~ a solution of (2.4), and

thus its coefficient of x is zero. z is uniquely determined by ~his

requirement. So far the coefficients are known to be rational functions

of 12,... ‘t d and we ver i fy  now that actual ly  they are polynom ials in

12 ’ ’ Td’ For this purpose we compare coefficients in (2.4) for

I
I

S 

—7—
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Z = Z Z UX
a .

0

We find that the terms of degree a + 
~d-l 

- 
~ in (2.4) are

(a - n 1
) Z  +

plus terms which are polynomials in ~~~~~~ . . ,Z and the known coe f f i cients• 5d+l
of Y and X. Thus we can determine Z~ recursively as polynom ials in the

coeff ic ients of X , Y , with rational coefficients. By induction on d we

conclude tha t the Z0 are pol ynomials with rational coefficients in

r 2 , r 3, . .  
~~
It

d • The h ighest coefficient is found for ~ = 
~d+l f rom

~~d+l 
— nd_ l )zO (2d + 1) .

Since nd÷l 
- 

~d-l 
= 2d + 1 we have Z = 1 fo r a = nd+l . Thus we have

S nd+lZ = x  + . .
~~

is a polynomial with coefficients Z~ in the ring Q [12 1 •  . . ,t~~ ] of

polynomials in 12,.. .,Td.

If we set

S 

0d+l = ~ +

then 0d+1 is clea rly a solution of (2.2) and satisfies the desired

normalization condition.

The proof will be complete if we verify (2.3) for k = d + 1 and show

that 0d+1’ ~~~~ 
have no common fac tors.

To do this we use the identity

(2.7) ((Od +l , X ) ,Y2 ) = X Y {O
d+l ,Y) 

— ed+lY {Y .x}

where again y = 0c~ 
X = 0d—l~ 

By construc tion

= (2d + l)Y2

and the left side of (2.7) vanishes . By induction hypo thesis {Y ,X) 0,

hence we conclude from (2.7) that

I 

- 
{ed+l, Y} = 0

—8—
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Finally we observe that 0

1 
= x , 0~ x 3 

+ 1
2 

sa tisf y the proper ty

that 0k’ 0k have no common factor . Our assertion is proved inductively

for

0d+l = Z + Td+lOd_l = Z + Td+lX

from the following remark : If X , X have no common factor over Q [12,. . .

and Z is any other polynomial then
t ,

Z + T X  and Z + t X

have no common factor over Q [12,13,...,Td,T]. Such a common factor would

have to be linear in 1, and one readily shows that its degree in x must

be zero.

This completes the proof of the proposition.

Remark 1. The above polynomials have the homogeneity property

O
k (AT l,A 3T

2,.. .,x
2k
~~ Tk

) =

• We say the 0
k 

are “isobaric ” of degree n
k 

if we assign i- . the weight

2j — 1.

Indeed , if we replace x , T
~~ 

0
k 

by

* * 2 — l  * 
n

x = Xx , 1. = ~ 1., e = x k0
) j  k k

then one verifies that (2.1) , (2.2) and the normalization condition are

preserved . Hence by uniqueness

* *0k 
= O

k
(1 )

proving the remark .

S Remark 2: The parameters 
~~~~~~~~~ 

were introduced by a rather arbitrary

normalization condition. One can free oneself from this arbitrariness by

replacing the by

= a~ T .  + g~~(t 2,r 3,. ..;T j_l
)

where g
~ 

are polynomials wi th rational coeff icients and a~ * 0 is a

• I
;S 

-9-
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rational number. Moreover , we require that g. be isobaric of degree j
• which amounts to requiring that the transformation -

~ t .  commutes with

1. -
~ X~~~~

1
T .. In fact , the above birational transformations form a group

and we will reserve the freedom to pick an appropriate such transformation

(see Section 5).

In the following we need another property of these polynomials.

Lemma 1: For fixed d > 1 let

0d~~ 
+ T

l~~
T 2 , . . . , Td

) = ,~n + 0 ,~n—l + + °n’ 
= ‘

~d

Then the a . are isobaric polynomials in t ,. . . ,t of degree ~~. Moreover1 d

°2j— l = + q(T21...,t~~ 1) for j  =

• where cz~ * 0 an d q is a pol ynom ia l, isobaric of degree 2j — 1.

• Corollary : This lemma implies that the above relation can be solved for

t
l~~

t
2~~ ~‘

T
d and ~~~~~~~~~ expressed as isobaric polynomials, w i t h  a non-

• vanishing linear term,of O
1~~

O 3t O 5 I•• ‘°2d—l~ 
Hence T

1
11
2
1.. . , r ~~, are in

birational , isobaric equivalence with °1’°3’~~~~’
°2 d l~

Proof: It is obvious from the above proposition that the a . are isobaric

polynomials in the T2’~~~~’
T
d and we just have to verify that a. ~ 0. Of

course , a . = a . (d) depends on d , and we simply compute it.

Clearly a . is the coefficient of ~~~~~~~~~ in 0 = 0 and there—
j  j  d

• fore we have

n—2j+l for t 0 , . . . , r = 01 d

while

0 = ~
n for = 0 ’

~~~~~’~~d 
= 0 .

Hence if we differentiate (2.2) with respect to i ., ~~~~~~~ denoted by a

dot , by a pr ime we f ind

~°d÷l°d—1 
— 
°d+l°d—1~~~~

0d+l°d—l 
— Od÷l Od .1) = 2(2d +

—1 0—



For 11 
= T

2 
= = t

d 
= 0 this gives

~ — 2 j  + 1) — nd_l }a
J 
Cd + 1) + 

~~d+l 
— 

~~d— l 
— 2~ + 1) )a. Cd — 1) = 2 (2d + l)a~ (d)

or since 
~d+l 

— 

~d—l 
= 2d + 1

(d — j  + l)a
3
(d + 1) + (d + j)a.(d — 1) = (2d + l)a~~(d)

This recursion formu la for a (d), together with a. (d) = 1 for d = j
(by normalization) and a.(d) = 0 for d > j ,  determines ci~~(d) uniquely .

In fac t one f inds  explicitly

c i . ( d )  = + 
= (d . i) � 0 for j  =

wh ich proves the lemma .

This lemma has the following consequence : The polynomials

Od (x + T
l~~

T2l . . . l T
d

) are uniquely determined by the choice of the Ill .. .‘T d.

Indeed , if

O
d
(x + 1

1
1121• . .I •t

d
) = O d (x + T

l~~
T2r .~~~~

,T
d
)

for all x then the coefficients 0 (1) = o . ( T ) agree , whi ch impl ies by

the above lemma that T
k 

= T
k This remark implies that the representation

• (1.3) of u 
~ 
Md is one to one .

Remark 3: For T
2 

= 1
3 = 0 one can eas ily compute 0

d

exp l i c i t ly  and f i nds  for d > 3

0d = X
d 4

{X
4 d 6  

+ (2d — 1)Td 1~
2d_ 3 

— = 5 Td-l + T
d

X
2 d S }

This fo rmula con tai ns as special cases those of [1] ,  propos ition 2 and 3,

Section 5.

— 11—



§3.  A deformation p roblem for the modified Korteweg-de Vries equation.

In [5] Lax related the Korteweg-de Vries equation - as well as its

higher analogues — to the iso—spectral deformation of the operator

(3.1) L = - D 2 + u

where u = u(x) is a C —function. We will describe an analogue problem

for the first order operator

(3.2) A = D - v

wi th v = v ( x ) .

For motivation of the following we consider at first a bounded linear

operator A in a Hu bert space and call A equivalent to A0 if there

exist two unitary operators U1, U
2 

such that

( 3 . 3 )  U 1AU2 = A
0

• Clearly the invariants of this equivalence relation are the spectral
* *invariants of A A or of AA

We ask for deformations A(t) of A
0 = A ( 0 )  which remain in the same

equivalence class. Assuming that U1 = U1 (t) , U
2 

= U2 (t) are defined

through differential equations

U. B.U.; U.(0) = I; j  = 1,2
3 3 3  :i

with skew Hermitian B., we obtain by differentiation of (3.3)

U
1
1(A - B1

A + AB
2
)U2 = 0

or

(3.4) A = B
1
A - AR 2

We apply this consideration to A = D - v , v = v (x ,t) and choose

B. = D 3 + b.D + Db.
3 3 3

as skew Hermitian operator. We now consider (3.4) as a forma l relation

for differential operators. The left hand side of (3.4) is a multip lication

operator , name ly multiplication by ~~~ and b1, b2 have to be so



r~
• ~ ~~~~~~~~~~~ T~~~~~~~~~~~~~T~T 

S

determined that in B
1
A - AR

2 the coef f ic ien ts  of D4, D3, D2, D vanish.

The first two coefficients vanish automatically while the other two are

—3v + 2 ( b 1 
— b2

)

— 3v + b1 
— 3b

2 
— 2 ( b 1 — b

2
)v

Setting these expressions equal to zero yields two linear equations for

b1, b2 with the solution -

b1 = 
- 

~~ (— V + v2 ) + c

b2 = — (v + v 2 ) + c

with an arbitrary integration constant c. This constant reflects the

trivi.~1 solution of (4) with B. = 2c0, Vt 
= v~ . Therefore we set c = 0

S 
ar•d obtain from (3.4) a partial differential equation for v which is

coir~’uted to be

~3 . 5 )  vt = ~~
- v — 

~ v~v .

This is the so-called modified Korteweg-de Vries equation which was used

by Miura 171 in his derivation of the conservation laws for the KdV

equation. For this purpose he showed that the function

(3.6) u = v 2 + v ’

satisfies

1 ‘ ‘ ‘  3(3.7) u~ = U — uu ’

• if v is a solution of (3.5). This remarkable fact has a natural explana-

tion in the following observation :

If ~5i = V + V
2 then the operator (3.1) can be factored as

*
(3.8) L = A A

where

*A = -D - v

is the forma l adjoint of A. Moreover , the deforma tion equation ( 3 . 4 )

—1 3—
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~~~~~~~~~~~ 
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gives rise to a deformation equation for L

(3.9) L = A A  + A A  = A B 1A + B2A A  + A B
1
A - A A B 2 = [B2, L] ;

here we used that B; = —B., B. = B (v). This is precisely the deformation

problem

(3.10) L = [B ,L]; B = B(u) = D3 + (b(u)D + Db(u))

studied by Lax [5) , which leads to (3.7) and B2
(v )  = B(v + v ) ,  provided

the arbitrary constant is normalized appropriately. This shows then that

any solutions v of (3.5) gives rise to a solution u of (3.7) via (3.6).

This appears as a consequence of the factorization (3.8).

If instead we consider the opera tor

* 2L A A  = — D  + u

with U = -v + v2, then clearly we find analogously to (3.9)

• i~= [B
1
,i~) -

• and B
1(v) = B(u) = B(-v + v2) ,  where B(~i) again denotes the third order

S 
operator obtained by Lax . Moreover , ~~=-v +v 2 is automa tically a solution of

(3.7). The duality map u -* ~ which takes solutions of (3.7) again into

solu tions of the same equa tion , a so—called Backlund transformation , is

* *here related to the deformation of two products AA , A A , i.e. to
*

exchanging A and A

These considerations can be generalized to the higher Korteweg-de Vries

operators X~ by consider ing real skew Hermi tian opera tors B1, B2 of

degree 2 j  — 1. Th is leads to ope rators B1 Cv) , B2 (v) expressible with

polynomial coe f f icien ts in v ,v ,... (this is a difficult point) which

are of the form

B1 (v) = B(—v + v2)

S B2(v) = B(v + v2)

• *
where B = B ( U ) correspond s to the iso-spectral deformation of L = A A ,

I
—14—
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i.e. i = (B ,LJ associated with the X .— f low. For the explicit representa-
tj05 of B (u) we refer to [6].

We will not present the proof of this statement since we find it easier
-. - to introduce the X~ via a recursion formula and then verify directly

their invariance under the Backlund transformation . This will be done in
Section 5.

t I

—15—
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§4. The construction of the rational potentials.

From the factorization

* — *L = A A , L - A A

one reads o f f  that

(4.1) AL LA

This identity shows that

(4.2) (L — X )~~ = 0 implies (L—A )A lp = 0

which a llows us to con struct the solutions of (L — X )lp = 0 from those

r of (L — A ) .~ = 0.

The mapping u u is an involution , i.e. u is mapped back into u.

The following is closely related to [2]. However , i f one observes that

the factorization

* ‘ 2
• 

S L A A ;  u v  + v

depends on the choice of v one can reach new potentials by repeated

application of this procedure . The various choices of v can be easily

described by the solutions ~ of

L~~ = 0 , v = ~~— .

Indeed with this choice of v one has L = A A for A = D — v; as well

—l * — 1as A~ = 0. In fact , we may write A = ,‘Dlp and hence A = —~ DP.

— 2 —From Ap = 0 one has A ~ = 0 ar.d L = —D + u , u = u - 2v sa tis f ies

= 0

S 

Inste:d of using and = - 
~~~

— as the basis for the factorization of

L = A A we pick any other solu tion ~ of L,,~ = 0. Since the Wroaskian of

and is a constant we determine ~ as a solution of

(4.3) [~~~~~1] = cons t * 0

where (a ,b] = a b - ab denotes the Wronskian determinant. Then

• t v s— , u = u — 2 v

— 16—
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• gives rise to a new potential u = U - 2 .  The solution of (4.3) introduces

one integration constant at this step.

This simple procedure, started with the potential u = 0 yields the

rational potentials: We set u0 = 0, = x and construct a sequence of

potentials U
k inductively as follows. We construct °k from

(4.4) 1
~ k ’~ k—l

1 = const * 0 for k = 1,2 ,...

and set for k > l

(4.5) u
k 

=

Since this transformation which maps Uk into Uk+l takes solution of

the KdV equations again to solutions of the KdV equations, we will

obtain in U
k a k—parameter family of solutions of these equations since

every step introduces one integration constant. It is surprising , that

this proced ure gives rise to rational funct ions in fact , the most

general rational solutions of the KdV equations , aside from the trivial one
S u = - 4,~S of (1.1). The following lemma expresses the result of this construc-

tion (4.4), (4.5) in terms of the 0k•

Lemma 2: If 0k denotes the polynomials of §2 then the rational functions

(4.6) U
k 

= _2 (.~
_ ) = —2(log Ok

)

k 0,1,...
0k+l

~ 
— ;  V
k

S 

sati s fy

• [
~~k~~

P
k~~1

) = 2k + 1

(4.7) (—D2 + ~~~~~ = 0

2( u = v, + v
• (4.8) ) ‘

~
‘ 2

= 
~~~

V
k 

+ V
k

—17—
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Proof: For k = 0 the definition of 0
0 

= 1, O
i 

x leads to U
0 

= 0,

x in agreement with our requirement. The recursion formula (2.2)

leads to

S 
k
k~~

Pk .l ) = 
[~~ .±i .!~~ .i] = 2k + 1

The definition of Uk~ ~k 
yield

e 2
U

k 
= -2 ~~ — = -2 + 9ç

— 

0k+l ~k 0k 0k+l 0k

so that
f a

— 

0k+l 0k 0k 0k+l — 

{O k,ek+l}— — U
k 

— 
~~
— + b— - 2 

c 
— 

~~ 
0k+ 1

which vanishes by (2.3).

• 
- 

The identity
S 

‘ I ~ I 2

~
‘k ~k 2I 

V = — = — — — = u  - vk 
~k ~k ~k 

k k

proves one of the last relations. Finally 0k+l = 8
k~
’k 

implies

• 
uk+l = _2(log (0~ v~~))

” 
= u

k 
-

= U
k 

- 2vk = - vj +

proving the lemma .

We summarize : The relations (4.8) show that Uk+l is obtained from

Uk by the Backlund transformation of § 3 while (4.6) expresses these

potentials in terms of the polynomials The equation (4.7) implies that

= (—D
2 

+ u
k
)so = 0

. 
0k-fl . .has one solution ~ = p = —. The Wronskian relation shows that

‘
~ ~k -

— 18—
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0k l
= 

~ k-l 
= —b- — is another solution . Thus the most general solution is S

k
given by

= (C
1
O~~~~ + c2Ok+1)Ok

It is interesting to note that also the solutions of the equation

(L
k 

- =

2are the product of rational functions in x and e , A = —w . Indeed

by (4.2) we see: If g, solves the 

:b::e
_
~~~~~~

0: :::
is a solution of (Lk+l 

— A )4 = 0. For k = 0 we have i~ = c
1
e~~ + c

2
e~~~~

1X
,

S hence
+ (ax= A.

K
. ..A

2A1
(e

is a basis for (Lk+l
_A )IP = 0. This is essentially contained in [2), in a

different guise .

As the special example we mention the case 1
2 

= r 3 
= = T

k 
= 0 ,

i.e. 0
k~~~ 

= ~
mk or Uk 

= ~
‘k The equa tion

+ (A - 
k(k ÷ l))~ = 0

has the solutions ~ = ~~ ~~ Ck+~ ) 
(iax) with the Bessel functions J ,  which

for integer ‘a — 4 are indeed elementary functions of the indicated nature.

—19—
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§5. The KdV-flow s.

Following Lenard we define the KdV vector fields Xk and the

Hamiltonian

t~fl
(5.1) Xk(U) = D -

~~~~~~~

recursively by X1 = D, or X1(u) = u , and

1 3 ISHk(5.2) Xk = CUD + Du — D ) k = 1,2,...

or formally

(5.3) X
k 

= (U + DuD ’ — 4 D2 )X k l = 
~~~k— l

a where

(5.4) R = u + DuD 1 
- 4 D2

This definition requires the verification that at each step x 
1 

can be

~~k l  
k

written as the derivative of , which is expressed as a polynomial

in u and finite ly many of its derivatives . For the proof of this fact ,

see e.g. [3], [6]. Also X
k is defined up to an arbitrary constant which

is normalized by the requirement that Xk (u) is an ‘isobaric ” polynomial in

u ,u ,u ,... of degree 2k + 1, which means that every term

00 0
1 2 02u (Du) CD U)

in xk (u) satisfies ~ (2 + v ) cz  = 2k + 1; i.e. u is assigned the weight
v>0

2 and each derivativ~ the weight 1. (This weighting is consistent with

the fact that in L = —D 2 + u multiplication with u and D2 are on the

same foot ing.)

For k = 2 , for examp le , we find

1 3 ‘ 1
X2(u) = CuD + Du - 

~~
- D )u = 3uu - 

~~
- u

which agrees with (3.7) up to an unessential factor -2.

• —20—
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Similarly we introduce a sequence of vector fields v~ = Y
k (v) with

-4Y2 (v) corresponding to (3.5). The requirement is that every solution of

= Y
k(v) gives rise , via u = v + v2, to a solution of u~ = xk(u).

This requirement leads to the following recursive definition :

Let S be the formal operator introduced by Olver in [10], namely

(5.5) S = 2v~ + 2 v D~~ v — 4
and set

(y (v) = v
• (5.6) 1

~~
Y
k
(v) = SYk 1 (v) for k = 1,2 

Again it is important to show that Y
k(v) can be defined as polynomials in

- ,  v,v ’ ,..., , which we will do presently. Second ly, the definition is made

unique by requiring that Yk ( v )  are isobaric polynomials of degree 2k if V

and are assigned the weight 1 each . For example , for Y2(v) we find

2 ‘ — 1  1 2  ‘ 2 ’  1Y2(v) = (2v + 2 v D v -~~~ D )v 3vv -~~~ v

which agrees with (3.5) up to the factor —2.

Lemma 3: i) The Yk (v) are uniquely defined as isobaric polynomials of

degree 2k by the recursion formula (5.6) and ii) satisfy

(5.7) C2v + D)Y
k
(v) = X

k (v
2 

+ v )

Moreover

= _Y
k

Cv) .

Proof: We proceed by induction. For k = l  the above statement is evident.

We assume it holds for k and verify it for k + 1 . First it is to be shown that

SY k = (2v2 + 2 v D~~ v 
- 4 D2)Y

k(v)

can be defined as an isobaric polynomial in v and its derivatives. For

S this it is sufficient to verify this for D ’CvYk (v)) or for

S D 1 (2v 4 D)Yk
(v) = 2D

~~~
(vY

k
) +5Y

k Cv) .

-21-
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But by the induction hypothesis (see (5.7)) we have

(2v + D)Yk 
= x

k
(u) = D

with u = v + v2, and therefore
S 

— 1
D (2v + D)Y• k 6u

is indeed a polynomial in u = v + v2 and its derivatives. Of course,

one could add an arbitrary constant to D 1 (2v + D)Yk but the choice is

unique by requiring that D 1(2v + D)Y Cv) be isobaric of degree 2k in
cSH
k 

k

v,v Note that -s--— is isobaric of degree 2k in u,u ,... when

u = v ’ 
+ v2, and by induction it follows that

2 ‘ 1 2  ‘~~~~~k
• 

Yk+l = SY
k

= (2v - v  _
~~~

D)Y k
(v) + v -i-—

is isobaric of degree 2k + 2 in v,v ’ 

S To prove (5.7) we observe the intertwining identity

R (2v + D) = (2v + D) S

for S which is readily verified . It implies

• (2v + D)Yk+l (v) = (2v + D)S Y
k
(v) = R(2v + D)Y

k
(v)

= RX
k (v + v2) = Xk+l (v + v2)

where the isobaric character of the Xk, Y~ is used implicitly to

fix the integration constants. This completes the induction.

Thus the polynomials Yk (v) (k > 1) in v ,v ,v ,... are uniquely

defined . Moreover , they are odd in v , i.e. satisfy •

Yk (—v) 
_Y
k
(v)

Indeed this follows immediately from the recursion (5.6) since S is even

in v and Y 1 (v) = v is odd , which completes the lemma .

Next we show that Xk leaves the manifold U
d 

= —2 (log °d~ 
invariant.

This is the contents of

—22—
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Theorem 1: There exists a unique choice of rational functions

and differential operators

= 

j= l 
1kj 

~~~~

such that for d = 0 ,1,2,...

(5.8) X
k
(u
d
) = r

kud

and
I I

0 0
(5.9) Y

k(Vd) = rk
vd where vd = -

d+l d
(Since ud, vd depend only on finitely many variables the sum breaks off.)

In other words, if the 1. satisf y

= Ykj (T
2~~

...l T
j
) j < d

then u = ud (x + 11,12,... l rd) solves the equation

Proof: We proceed by induction on d. For d = 0 we have u
0 = 0 and

therefore X
k (uo

) = 0. Assume next that Ykj 
SY
kj (T2f .~~~~~~

T
j
) for j= l ,2,..., i

have been determined such that (5.8) holds. Then we conclude from (5.7) and

2 ~ du = v + v with v = — , p = — thatd d d d 
~d 

d

(2 V
d 

+ D)Y
k
(vd) = Xk (ud ) = r

kud = (2v d + D) F
k
v
d

or

(2V
d 

+ D) (Yk (vd) 
— rkvd ) = 0

Since ~ , = ~,—2 is a solution of (2vd + D)ip = 0 we conclude that

(5.10) Y
k
(vd

) - F
k
Vd 

=

with c being a rational function of ‘2’ ~
td+l. On the other hand vd

depends on Td+l and in

—2 3—
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(5.11) r
kvd 

= 

j<d 
kj  ? t.  

+ ‘
~k,d+l aT~~~ 1

the coefficient 
~k,d+l can be uniquely determined so that c = 0. Indeed ,

S I S

Vd = = ~45±’ - where 0
d is independent of t = 

~~~~~ 
whi le

Hence , by (2.2)

~
V
d 

= 
(

~~~ S~~ S i )  = —(2d + 1) = —(2d +
d+1 d+l 0

- d+l

and the coefficient ~~ ~~~~~~~ 
in (5.11) is —(2d + l)~~~

2; thus we have

from (5.10)

— 

j~~d ~
kj = -(+2d + 

~~~k,d+l 
+ ~

By appropriate choice of 1k d+l’ as rational function of T1,.. . I Td+l~
we obtain c = 0 , i.e.

Yk (vd) = F
kVd

as claimed (5.9). This determines 
~k,d+l 

= Yk ,a÷1 (T 2,. ...Td+l ) uniquely .

Using that Y
k
(_v) = _Y

k
(v) we conclude from (5.7)

xk Cud+l ) = Xk
(_v

d + v~ ) = (~~
2vd + D)Y

k
(_v

d)

= (2V
d 

- D)Yk (vd)

= (2v d 
- D)rkvd

- 
= r k (vd 

- vd
) = r

kud+l

which completes the induction and the proof.

Lemma 4: The = 
~~~~~~~ 

are polynomials of 12 , 13,... with rational

coefficients . If we assign Tm the weight 2m — 1 the 1kj are isobaric

of weight 2(j — k). In particular , they depend on with

< Ii — k) < j - 1 only. Moreover , ‘
~

5
kk is a non-vanishing constant.

-24-
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I; Proof: First we express the differential equation U
t 

= x
k (u) via

u = —2(log 0) in terms of

0 = 0  =~~
n + ~

n-l + + 0
S 

d 1 n

with a = This expresses the differential equation in terms of the

• 
• which finally are transferred to the r . via the corollary of lemma 1 of

Section 2.

From S

SH
kS 

-

we conclude that

— 2 . ’ ~~1 l~~~
1k0 (00 — 0 0) = 

~

an integration constant being eliminated by the isobaric property . The

right hand side depends on u ,u ,..., and we observe that

D u = 0 P (0,O ,.. .)

~5H
S with 

~m 
being a polynomial in 0,0 Since -~~

-
~~~~ is isobaric of

degree 2k we find that

2k l  k
O ~

- —
~
- - — = Q (  ,8 ,. .. )

is a polynomial in 0,0 Thus the differential equation takes the form
S 

2k—2 I 1 I
O (0 0  — 0 0) = Q ( O ,O ,. . . )

In this equation we compare coefficients of x. The term of highest

power in x containing is

x
(2k_2

x jxn~~~(n - - i))~ = ~
2k j-l . .

i.e. comparing the coefficients of ~
2kn_ i_ l 

we find

j a . = ~ a o  + a .
~ m<j m m  J

• where a11 a21...,a. are polynomials in the o . Thus we f ind

—25—
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a = b ( o 1,.
L

with polynomials b~~. Finally using the corollary of lemma 1 we express

these differential equations in terms of T
l~~

E
2I
~~~

. in the form

t j = Ykj ( T ,I T 2 I . . )

One read ily checks the homogeneity of the to be given by

Ykj (AT
l~~

A T
2~~
. ..) =

by using an argument like in Remark 1, Section 2, observing the isobaric

property of Xk. In particular , = 0 for i < k and 
~kk is a constant.

To evaluate this constan t we use the fac t that

* 2n
U
d 

= —4 for 1
2 = 13 

= = = 0

and for d =  k

—(2k+l)XkUk 
= C

k
X

S with a rational constant ck 
# 0 as one computes from (5.3) . Thus we have

for 1
2 

= 1
3 

= ~~~~ = T
k 

= 0

S k ~u 3u
0 

~ 
XkUk 

= r
kuk 

= 
•~~~ ~T ~

‘kj 
= 

~T ~
‘kkj=l j  k

as = 0 for i < k. Hence # 0 as was claimed.

Thus the differential equations induced by Xk are give n by rk .  or

equivalently by

I =IL j ‘kj ’ 2’ 3’ •
~~~~
‘ j—l ’

with isobaric polynomials Obviously the equations can be solved recur-

sively as polynomials in t. In fact, more is true : There exists an isobaric
*

birational transformation I ~~~T • such that for all k > 1 we have
j  3 —

r =
k 

*

~

—26—
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i.e. the above differential equation reduces to

and can be interpreted as the time variable for the flow Xk . This is

a simple consequence of the fact that the X - and hence the F — commutek k

We recall that the were introduced by an artificial normalization ar~~

these parameters are actually def ined  only up to the group of birational

transformations which commute with 1. ~ A 2~~~ 1. Now we make t~~~ - U S
~~

US
~

- -~~c i c ~
of the parameters so that they are adapted to the KdV flows .

Theorem 2: There exists a unique birational transformation

= a.~~. + g .(T
2
,1

3
,.. .~~~i . , )

with g. being isobaric polynomials 
S

g .(A
3T2 , A 5T

3
,.. ..A

2J 3
1j_l ) = A 2~~~~g ( i 2,... ,1 .~~~~)

with rational coefficients and a rational number a. � 0 such that
3

Coro1la~~~: If u = ud (Tl,T2,.. . ,Td) is expressed in terms of as

u = ud (T l,...,Td) then the function

* * * *
= u

d
(•t

l + X ,T2,..

is a solution of —h- = Xku.al k

Proof: We proceed by induction as follows: Chang ing the notation of t~~~--

*I . also we assume that fo r  some k > 1 we have
-
~~~ 3 —

S r = a  + y . ~~~ , 1 < j < k — l ,
j  T~ J k T

k 
— —

rk Ykk a T

up to terms a for m > k , which will be suppressed. For k = 1 t h is

* • aWe abbreviate ~~~~~ by a1 .

—27—
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is tr ivial ly  the case and we w i l l  construc t a transformation

• 1T; = •r
~ 

(j # k)

(5.12) /

S = a
k
l
k + g~~(1 2~~

. . . l T
3~ _~~ )

such tha t

-
~~ r . = a ~~ + o ~a~~ k

r = a ~• k ‘k

- -  . up to terms 3
~~* 

with m > k. This is obviously sufficient for the proof , if
m

we also verify that the and a
k have the required properties.

- To carry out this induction step it is convenien t to break up (5.12)

into k stcp~ and effectively make a second induction . First we achieve

• by = akik that rk = ykk ak 3 = ~I~~~~* by setting ak 
=

a rational number. Assume now that we already achieved

• 
~ jk ° for s < j < k .

- Then for s < < k, using the commuting of the Xk ,  hence Fk~ 
we compute

0 = r •r — r r .  = a
) S  s 3  aT

1 
T
k

S hence ‘
~sk 

depends on T 2 1 T 3 , . . ., T
5 

only. Therefore we construct a

transformation

S 
T
k 

= t
k 

+ g (T2 ,...,1
5
)

so that

r = a  for s < j < k
3 

Sr
i 

—

and

while r , 1 < m < s - 1, maintains its inductively assumed form .

—28—
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S Thus , if we determine the polynom ial g such tha t

then we have e f f ect ivel y rep laced 
~sk by 0. The choice of g is unique

if we require it to be isobaric. After finitely many steps we achieve

= 3
~~

*, 1 < j < k

3

up to terms a1 with m > k. This completes the induction argument. The

isobaric character of the g
1 

follow s readily f rom tha t of the
-• 

This completes the proof of Theorem 2.

In conclusion we remark that the manifold M of rational function
II 

d
r U

d 
= —2(log °d~ 

agrees with the manifold considered in [1). Therefore

the roots x1,x2,. ..,x , n = n
d of

0d = 
~~ 

(x~~~ x.)j=l

i.e. the poles of

• U
d

= 2  ~~ (x-x•) 2

j=l

satisfy , by the derivations in El] the algebraic equations (1.4). This

fact could also be verified directly.

—29—
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§6. Explicit representations for the

If one makes use of Crum ’s formulae (see [2] ) one can represent the

polynomials 0
d as wel l as the t ransforma tion Ad_ l Ad_2 ... A 0 of § 4 in

terms of Wronskians in explicit form . In order to do this we define the

Wronskian of k functions 
~l’~~2’ ~14~)~ as

Wk = W ( p l ,4,2,...,11
k
) = det (D’~~~~.) i , j  = l ,2,...,k

For abbreviation we also set
- Wk (x) = W (~ ’1,i4~21 . ~~~~~~~~~~

• with another smooth function X . Then one has Jacobi’s identity

•‘ (6.1) [W
k (x),Wk+l

) = Wk+l (x)W k for  k = 1,2 

• Th is is readily veri fied. The lef t ha nd side is a linear dif feren tial
• 

• operator of orde r k + 1 in x which cl ea r ly  va nishes for X = 
~ 1

’’
~2

’
~~~~ 

‘
~~k

S - 

as wel l as for  x = 
~k+l Thus, if we assume that the (

l1*21 .~~ ‘~k+l 
are

• linearly independent, the left hand side must be a multiple of Wk+1 (x).

Comparing the highest coefficient one obtains (6.1).

S We appl y the above definitions to a system satisfying 
~~ 

= 0 ,

= x and

(6.2) = 

~~—r 
~ = l ,2,...,k .

Then one verifies , for = 1 and setting w
0 = 1 that

( 6 . 3 )  W
k
(l) = (_ l ) k

W k_ l for k = 1,2 

To prove this we write

W
k
(l) = ~~~~~~~~~~~~~ ‘

~~k’~~~ 
= (_l) kW(l,~~,,... ‘~

‘k~

and since = x the last expression reduces to

Wk(l) =

and by (6.2) to (6.3).

— 3 0 —
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• Thus setting x = 1 in (6.1) and using (6.3) we find

(6.4) IWk+1IWk l J = W~ for k = 1,2,...

and

‘S 
W0 = i f W

i 
=

Thus if we set = x we see that and W
k d i f f e r  onl y by a

multiplicative factor :

(6.5) 0k PkWk

where one determines

* ~k 
= 1k • 3k-l • 5

k-2 ... (2k - 1) 1 
= 

~~~ 

(2k - 2j + l)~~

But this factor is unessential for the following . The choice = x and

(6.2) leads to

S 2j—l j—2 2i
• (6.6) = 

— U I  
+ 

i~ 0 
~i~~ 1 (2iH

Equivalently one define the ~~~ . by the gew?rating function

2j—l 2i—l
~ P- s = sin h(sx) + C p.s )cos h(sx)

j=l j=2 1

where p2,~~3,... are arbitrary parameters .

With this choice of P11(’21 ... the formula (6.5) gives the desired

explicit representation of 0k• The p2,p 3,... are birationall y and

• isobarically related to the T 2 1
1-

3
, . . .  and one finds for  the f i rs t few

values 12 = — 3p 2 , 13 = 45p
3
; p

0 
= p

1 
= 1, = ~~, p

3 
=

Now we express the mapping Td = Ad_ lAd .2 
• . .  A

0 
with

(6.7) A = ~~• D’p T 1 ; ~~~~. = —1±! S 2S±i

3 3 3  3 0~

in terms of the Wronskians .

• S~~ -31-
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Lemma 5: The map

X -
~ 
TdX = Ad_ l Ad 2  ... A0X

has the alternate form

Wd (x)
• T

d 
= 

W for d = l ,2 
d

Proof: This formula occurs in [2). Clearly for d = 1 it  is easily verified

and it suffices to check

A 
Wd (x) 

= _____
d W

d 
Wd+l

Indeed

Wd (x) Wd Wd (x) IWd (x),Wd+l ]Ad W
d 

= P
d
D 

W
d 

= ‘
~d

and using (6.4), (6.7) the induction step is verified.

In order to interpret the spectral propcrties of the operator

L = L
d 

= -D2 + Ud~ 
ud = -2 (log °d~~ ’ we choose the parameters so that the

roots of 0d’ i.e. the poles of U
d 

lie off the real axis , which requires

complex potentials. The spectral problem , as well as the inverse problem

for such complex potentials were studied by Marcenko [13]. We are i ndebted

to Mareenko for the following interpretation.

First it is clear on account of

LTd = T
d
(_D 2

)

that for A = 
_~ 2 that -the solutions of (L — A ) S ,~ = 0 are li near

combinations of
± (axWd (e ±wx

= 
W 

= c R~~(x)

with rational P Cx ) . Thus A > 0 gives continuous spectrum with reflection

• S • 2d+lcoefficient zero . One finds (4 i~~ ,~~~~ ) = 2w
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Secondly A = 0 has an eigenspace of of dimension > ~ in

the Hilbert space of the absolutely square integrable functions if N >

In fact , from the intertwining rela tion

T
d
(
~~
D
2 ) = L

d
T
d

2v 2v-22 x x .and D (2v) ! = (2v — 2 ) !  one finds that the rational functions 
-

_____ 1 W
d (x

2”)
= T

d (2v) = (2v)! W~

satisfy

L4
~~ 

+ 
~v-l 

= 0

We remark that Ta(x
2
~~

1) are linearly dependent on ~~~~~~~~~~ •
~~

4
~~ 

but the

are linearly independent , as

c
~
x2”

~~ 
for l x i  

-
~ ; with c

~ ~~‘ 0

Thus the 
~ 

c L2 if 0 < v < and A = 0 is an eiganvalu e of h igher

multiplicity. All this requires , of course , that the parameters i
i
,. ..

~~~
T
d

so chosen that no root of is real.

These cons idera tions a l low the fu l l discussion of the spectral proper ties

of these potentials.

_ _  
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